Phytochemistry, 1973, Vol. 12, p. 223. Pergamon Press. Printed in England.

ACACETIN-7-O-RUTINOSIDE AND PECTOLINARIN FROM CIRSIUM COLORADENSE

R. C. GARDNER*

Department of Botany, University of Wyoming, Laramie, WY 82070, U.S.A.

(Received 5 August 1972. Accepted 10 September 1972)

Key Word Index—Cirsium coloradense; Compositae; acacetin-7-O-rutinoside; pectolinarin.

I report the identification of the two major flavonoid constituents isolated from the leaves of Cirsium coloradense (Rydberg) Cockerell. They are identified as acacetin-7-O-rutinoside and pectolinarin (6-methoxy-acacetin-7-O-rutinoside). Pectolinarin has been reported from the leaves of eight other species of Cirsium. The structures of the flavones were assigned on the basis of R_f s, color reactions on paper chromatograms, and UV spectral data² (Table 1). The acacetin glycoside determination was made by comparison with published results. The 6-methoxy determination is based on the bathochromic shift in Band I of only 27 nm (as opposed to a shift of 55–60 nm) upon the addition of AlCl₃ and AlCl₃-HCl. This lower shift is characteristic of flavonoids with a free 5-hydroxy and an adjacent 6-hydroxy or 6-methoxy in the A-ring. Because the Band II maximum of the MeOH spectrum is at 274 nm (as opposed to 286 nm, typical of a free 6-hydroxy¹), this flavone is considered to be a 5-OH-4', 6-di-OMe-7-O-glycoside.

Table 1. Chromatographic and spectral data for acacetin and pectolinaringenin 7-O-rutinosides and their aglycones^{2,3}

Acacetin 7-O-rutinoside		Acacetin	Pectolinarin	Pectolinaringenin	
NaOÄc	268, 325 268 decreases 370, 275, 300, 345, 385 1275, 300, 345, 385 268, 325 H ₂ BO ₂ 268, 328		276, 330 reases 296, 380 decreases 83 277, 300sh, 356 276, 328 275, 331	274, 330 272sh 291 357 277sh 301 357 285sh 301 350 275 297sh 367 276, 335	Ç,
			n Whatman 3MM paper)		
TBA HOAc	0·41 0·51	0·84 0·08	0·51 0·69	0·83 0·09	

EXPERIMENTAL

Voucher specimens are deposited in the Rocky Mountain Herbarium (RM). Leaves were extracted in MeOH, the extract concentrated by evaporation, and the flavonoids isolated using paper chromatography (TBA, 3:1:1 and 15% HOAc). The glycosides were acid hydrolysed (no aglycones were produced using β -glucosidase) and the sugars chromatogrammed using EtOAc-pyridine-H₂O (12:5:4). Sugars were detected by spraying the chromatograms with pthalic acid-analine-95% EtOH (3.75 g:2 ml:198 ml).

Acknowledgements—Financial support was provided by Sigma Xi Grants-in-aid of Research, and by the University of Wyoming in the form of Graduate Teaching Assistantships. I also express my appreciation to Dr. D. J. Crawford for his assistance throughout the course of my graduate study.

- * Present address: Department of Botany, Ohio State University, Columbus, OH 43210, U.S.A.
- ¹ J. B. HARBORNE, Comparative Biochemistry of the Flavonoids, Academic Press, London (1967).
- ² T. J. Mabry, K. R. Markham and M. B. Thomas, *The Systematic Identification of Flavonoids*, Springer, New York (1970).
- ³ J. A. Mears and T. J. Mabry, *Phytochem.* 11, 411, 412 (1972).